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I.

Introduction

Fast fracture induces rapid particle motions in the cracking body.

From the point of view of fracture mechanics such dynamic effects are of

particular interest in the i ediate vicinity of the propagating crack tip ,

where the fields of stress and deformation are critical for either con-

tinued fracture or for crack arrest.

A substantial body of literature has dealt with dynamic effects on

essentially brittle fracture, within the contex t of linear elastic fracture

mechanics. We mention review articles by Achenbach (1972), Freund (1975)

and Kanninen (1978). Dynamic effects in the presence of elastic-plastic

constitutive behavior have, however, been considered in only a few studies.

An investigation of the dynamic near-tip fields in an elastic perfectly-

plastic material was presented by Slepyan (1976), who considered both the

cases of anti-plane and in-plane strains. Dynamic near-tip effects in the

presence of strain hardening were investigated by Achenbach and Kanninen

(1978) on the basis of flow theory. These authors found results which

are very similar to the ones obtained by AmaEigo and Hutchinson (1977) for

the corresponding quasi-static problem. As shown by Achenbach, Burgers and

Dunayevsky (1979) ,  for strain hardening the governing equations are elliptic

when the crack-tip speed is less than a certain critical value . The usua l

separation-of-variables asymptotic analysis can then be carried out, which

yields singularities of the general type r~ (-l < p < 0) for the stresses

and the strains. As the crack-tip speed increases (or alternatively as the

strain-hardening curve becomes flatter) the nature of the governing equa-

tions becomes, however, hyperbolic , and the near-tip fields appear to change
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character.  Lndeed in the limit of elastic perfectly-plastic behavior the

stresses become bounded and only some strains display singularities , as

shown in the present paper , and earlier by S lepyan (1976).

In this paper dynamic effects on near- tip fie lds are investigated for

elastic perfectly-plastic constitutive behavior . The approach is different

from the one employed by Slepyan (1976), but the results are identical for

the Mode-Ill case. For Mode-I the results show some differences. In the

present paper the stresses and the strains have been expressed in explicit

form , and they include higher order terms .

As the crack-tip speed decreases the expressions for the stresses reduce

to the ones for the corresponding quasi-static problem , as might be expected on

the basis of intuitive arguments This is, however, not true for the strains,

which become unbounded in the limit of vanishing crack-tip speed. A signi-

ficant difference between the dynamic and quasi-static solutions is that the

dynamic solution does not describe elastic unloading behind the crack tip.

These anomalies suggest tha t the transition from dynamic to quasi-static

conditions is non-uniform. It is speculated that the transition from the

dynamic to the quasi-static solution with decreasing crack-tip speed is

effected because the dynamic solution is asymptotically valid in a small

zone , which shrinks on the crack tip in the limit of vanishing crack-tip

speed.

1. Governing Equations

Both a stationary coordinate system with axes denoted by xi ,  and a

moving coordinate system with axes denoted by (x ,y,z) are considered . The

moving coordinate system has its origin at the propagating crack tip. The

geometry is shown in Fig. 1. In this section the equations governing the
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3

motions of an elastic perfectly-plastic material are stated in the stationary

coordinate system. In the next sections these equations are simplified for

anti-plane strain and plane strain, for the special case of “steady-state”

fields of stress and deformation relative to the moving crack tip .

Relative to the stationary coordinate system the equations of motion

are

p 
~~
u
i (1.1)

In the zone of plastic deformation the stresses are assumed to satisfy

the Tresca yield condition, which states that

~~max 
= k (1.2)

where is the maximum shear stress, and k is the yield stress in puremax

shear. For an elastic perfectly plastic solid the total strain rates are

defined by

~~ ~~~. . = + ~ (1.3)t 1.3 t i j ti 3

Here the elastic strain-rates are defined by

el l~
~t
’ij 

= 2~ ~~t~
’ij 

— 

l-~ ~t~kk ôij) (1.4)

while the p lastic strain rates are

= X ~~ (1.5)

Equations (1.3) - (1.5) are the Prandtl-Reuss flow equations

t ~ ~~~

- -. — ——— - — — .— --—-—--— 
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In (1 4) ~ and ~, are the elastic shear modulus arid Poisson ’s ratio ,

respectively, while in ( 1.5) S ., defines the stress deviator , and ‘ is a

non-negative proportionality factor , which may vary in space and time.

Equations (1.1) - (1.5) should be supp lemented by appropriate boundary

conditions .

The speed of the crack tip is it = d2 (t)zd t , where 2(t) is the mono-

tically increasing crack length , and where v(t) and dv/dt are continuous .

The i~oving and the stationary coordinate system are related by

x = x
1 

— .2(t) (t.6~

By means of (1.6) the material time derivatives are transformed to the

moving coordinate system by the relations

= - v ( t) .~
— 1.7)

2
= - ~~(t )~~~ - 2v(t)~~~— + it (t )— ~

For the case that v(t) approaches a constant value v as t increases ,

it may be assumed that steady-state fields of stress aLid deformation

are established relative to the coordinate system moving with the crack

tip. This assumption implies that the time derivatives on the right-

hand sides of (1.7) and (1.8) may be neglected , which leads to the usua l

results that

2 2) “
~ 

- v~ ~~ ; ~~( ) ‘— v~ —i (l.9a ,b)

In the sequel the speed of the crack tip will appear in the “Mach

number ” M , which is defined as

_ _ _ _  
_ _ _ _  
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M v ( ~ /:)~ (1.l- ~

where (~~ c)2 defines the velocity of shear waves in an elastic solid

with shear modulus —

2. Crack- Propagation in Anti-Plane Strain

In the moving coordinate system (x ,y,z), steady-state motion ir. anti-

p lane strain is defined by a displacement w(x,y ’ in the z-direction. 3y

using (1.9b), the equation of motion (1.1) then reduces to

~ + - it
2 

w = 0 (2.1)
x x Z  yy z XX

The Tresca yield condition (1.2) may be expressed in the form

2 ~~~2 
~~k

2 
, (2.2)xz yS

and the Prandel-Reuss flow law (1.3) yields by using (1.9a)

~ w = — - 2’. c (2.3)xx ~ x x z  xz

w = ~ - 2 ’ (2.4~xy ~I. x y z  yz

It is sufficient to consider the solution in the half-plane y � 0

The boundary conditions at y = 0 are

x < 0 = 0 (2.5)yz

x � 0 ~ > 0 , w = 0 (2.6a ,b)yz

The yield condition (2.2) is identically satisfied by

-~~ = -k siriw , ~ = k cosw (2.7a ,b)yz -

By introducing the strain component

it = w (2.8)x x

--.. —

~
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together with (2.~ a,b) in 2.1), and eliminating 2 from (2 .3)  and

2.4), .~~~~ obtain

+ ~~~ + ~2 
~~ ~X

W
X 

= 0 ~2 . 9 )

and

CO Sw ~ it + 5 m w  W + = 0 ( 2 . 10 )x x  y x  ~ x

where M is defined by (1.1.0).

Equations (2.9) and (2.10) constitute a hyperbolic system of equations .

A brief study of (2.9) and (2.10), including a discussion of the charac-

teristic curves and the corresponding Rieinann invariants has been pre-

sented by Achenbach , Burgers and Dunayevsky (1979). These authors showed

that a solution of (2.9)-(2.lO) satisfying the boundary conditions (2.5)

and (2.6a ,b) can be constructed by using only simple and uniform fields.

In the present paper we start off with so-called “simp le wave” solutions ,

which are solutions for which the dependent variables are functions of

each other. ~ brief discussion of simple wave solutions is presented in

Appendix A .

It is easily verified that (2.9) and (2.10) are of the genera l form

given by (A.l), where

= ~I , and U
2 

(2.lla ,b)

while the components of the matrix L are defined by
.2

‘Cotw

L = (2.12)

k L
— — --— cot~

The characteristic directions follow from (A.7) as

- - - ~
, - - — -
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(2.L3~

:~ fo1 .ows fr~n A.8) that

dw
du. x

cot~ - “ 
— - k (~~sin~~) 

-.

Substitution of (2.13) into (2.14) wields

for “k : du = (k/~M) dw (2.15)

for ~? :  dw = - (k I ~ M)  du~ ~2.16)

These relations can easily be integrated to yield

for “ : it - (k/~M) .i~ + w~ ç2.F)

for “ :  it = - (k/~M) ~ + w 2 .18)

where w~ and w are cons tants of integration .

Equation (2.17) leads to a negative value of ~~ . Rence we use only

the rela tion given by (2.18). Substitution of (2.18) into either (2.9)

or (2 .10) gives

(cos u~ - M) ~ + 5 m w  ~ = 0 2 .19)x y -

Along the family of characteristic curves defined by V , see (2.13),

(2.19) reduces to dw = 0 , i.e., w = constant . Consequently the re-

lations given by (2.13) for the V _ fami ly can be integra ted to yield

sinw
y - 

- M 
x = z ( ~~) (2 .20 )

where e is the polar ang le def ined by

tan8 = y/x , (2.21)

and ~(~~) is an arbitrary function. However , by virtue of the boundary

______________ I’
- - .:,.. - . “-~~~~~ —‘~• ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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~onditi~ n 2 . 6 b ’) we ~iust have ~(~) a 0 . Thus

sinu~ ‘, -,x (_ ._2’• cosw - M

Eauations (2.22) and (2.21) imply a relation between ~ and

which can be solved to yield

2 , . 2 2~~~-cosw = M sin + (l—M sin 
~~ 

cos (2.23)

The stresses then follow from (2.7a,b) as

— 2 2 ½  -
= - k ~~l-M sin ~) - M cos~ sine (2.24)xz -

= k :(1_M 2sin
2e)½ cose + M sir~

2
e (2.25)

Substitution of (2.23) into (2.18) yields

w = - (kI~N) cos
1 
~.M sin

2
~ + (l-M

2
sin

2
~ )~ cose (2.26)

where we have taken w a 0 to satisfy the boundary condition (2.6b).

From (2.10) we obtain

- k cos~ k 1
w = w = — —-  - — 

~~~~
— -  

~~ (2.27)y x x y  ~.M sinw x , s~.nw x

where (2.18) has also been used , and w is defined as

wy 
= ~wI ?~r (2.28)

Equation (2.27) can be integrated with respect to x, to yield

it 2n[l-M siri2e - (1-M
2
smn

2
e)~ cosG

+ £nLl*1 sin
2
C + (1_M

2
sin

2
e)½cosei~ + -.‘(y) 2.29)

where -~c(y) is an as yet undetermined function .

~1
- - — — --,-- - - - -- ~~~ -~~~~--~~~~~~ ---~~~~~~~. rw~~ -~~~~

- -w ~~ 
—
~ ~~~~~~~~~~~~~~ 

— _1,_J
_
~
_J.

~
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~~~
-. .—•- —

. 
~~~~ .~~~~— ~~~

—- 
~~:

-..



9

The function \(r,e) can be obtained from (2 24) - (2.26) and either

(2.3) or (2.-~). After some manipulation we find

~ r ‘- ~~
-
~~~~~ (1 - M2 . 2

~)
½ 
~ 0 (2 .30)

which satisfies the essential condition on

It is noted that the expression for given by (2.25) cannot satis-

fy the condition that 
~yz 

0 at C , as required by (2.5). This

suggests that (2.23) - (2.30) are valid only in a domain 0 � C �

*while another solution hold s for 8 � C . This other solution cannot

be a simp le wave solution , since rio other than the one given by (2.23) -

(2.30) is availab le. A suitab le solution for � C � is, however ,

given by a uniform field of the form:

= constant , w = constant (2.31)x -

Such a field clearly satisfies (2.9) and (2.10). An appropria te cho ice

for w is

= —/2 , (2.32)

which , by virtue of (2.7a ,b), leads to the following stresses for

*e ~e � —
(2.33a,b)

Thus, the boundary condition (1.5) is satisfied . It immediately follows

from (2.23) and (2.32) that the angle 8* must satisfy the equation

2* 2 2 * ½  *M sin C + (1 - M sin B ) cos8 = 0 (2.34)

Hence

* 
= - tan~~ (l/M) (2.35)

* * 0 * 0
Thus B varies from 8 = 90 at M = 0 to C = 135 at M = 1.

Substitution of (2.35) in (2.26) and (2.29), and the requirement

.-. - _ -~%~-a._’. - ’ __ 

- 
— —  — ‘W ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- - - — - - - - • •~~~~•~fl

—-~~~~~~~----- -- ----- — — -c--
-
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10

*that the strains should be continuous at ~ = C leads to the following

rosults for C

w~~= -  rk!2~~~M (2.36)

w = :(y) 2.37)

Finally ,  an approximate expression for ~(y) can be found from the

condition that w should be bounded for y = 0, x — r , where r is they p p

length of the plastic zone. For si~ia1l y the expression for w given by

(2.29) then implies that

= ~ !~ ~
n(r /ly~) 

- 
~n(1-M) - in 2 + 1 (2.38)

The results presented in this Section are essentially the same as

those found by Slepyan (l9~~) who used an approach in which only the most

singular terms , 0(1/r), were retained in the governing equations .

For three values of M the stress components c , given by (2.24), (2.33a),

and a given by (2.25), (2.33b), have been p lotted in Figs. 2 and 3, res-

pectively . The curves show a substantial dependence of the stresses on M.

For M = 0, (2.24) and (2.25) reduce to a = -k sinC and a = k cos8
respectively , which are the expressions for the quasi-static stresses

derived by Chitaley and McClintock (1971). Thus, as one would perhaps

expect intuitively , the dynamic stresses reduce to the quasi-static ones in

the limit M -. 0. This is, however ,not true for the strains as discussed

later.

For 0 � 8 � 9*, the strain (I,&Ik)w
~ , 

which is given by (2.26), has

been plotted in Fig. 4. Again, a very noticeable dependence on M is

observed.

~~~~ r — --=‘-‘
~ —-

~~~~~
--‘—— — —‘v—, ~~~~~~~~~~~~ -~~ - 

c’ -- 
~~~~~~~

- -.- ~~~~~~~~~~~~~~~~~~~~ 
- —
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It follows from (2.29) 
a:
d (2.38) that w~ i~ singular at the crack

tip . In the domain 0 � o � C we find

k l-Mw — — -

~~~~

— Ln(r/r ) (2.39)

This result shows that W
Y 

not only becomes unbounded as r -. 0 , but also

as M -. 0. The strain component it is bounded as r -. 0, but it becomes

unbounded in the limit M — 0. Thus, for the strains there is no uniform

transition f~ indynamic to quasi-static conditions.

In the loading zone the quasi-static -solution is of the form

it — Ln(r /r )sin8 as r 0. Behind the crack tip the quasi-static solution

shows a region of elastic unloading. As a material point passes the crack

tip , the increments of ~~ change sign , and for the quasi-static case this

can only be achieved by elastic unloading . For the asymptotically valid

dynamic solution presented in this paper the loading zone extends, however,

comple tely around the crack tip, even though dif ferent  expressions hold for

* *0 � C � 9 and C � e � ir , respec tively. It is speculated that the length

dimensions of the zone in which the present dynamic results are valid are of

order 0(M
2
). Outside of this zone another (dynamic ) solution which does

describe unloading and which does show a uniform transition to the quasi-

static solution may occur.As N -. 0 the dynamic zone then shrinks on the

crack tip, and in the limit N a 0 the zone has vanished altogether, and the

quasi-s tatic solution describes the near-tip strains .

A final result of interest is the crack-opening angle . This angle ,

which is defined by ta4 ~ = ~~~ at C — ir , follows fr om (2 36) as

tan ~ — 2 tan~~ (rrk/24,iM) (2.40)

As M - 0 we find ~~ = ~i , which is in agreement with the quasi-static result.

~~ ~~~~~~~~~~ ~~~~ ~~~~~~~~~~ 
.
~~~

—
~
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3. Crack- Propaiation in ?larie Strain

In the moving coordinate system (x ,y,z), steady-state motion in p lane

strain is defined by displacements u(x,y) and v(x,y) in the x- and y-

Cirectioris, respectively . We assume that -

~~~~ 

is the intermediate stress ,

i.e., a � a a . For the elastic case this is true , for the elastic-x z y -

plastic problem it must be checked a posteriori. It was noted by Koiter

(1953), see also Getring~ (1973, p. 514), that the Tresca yield condition

then implies that

~ 5pl = 5
pl 

(3.1)t z  z

The condition of plane strain consequently reduces to 0 , which

by virtue of (1.4) yields the result

a = ‘~(c + a ) (3.2)a x y

We now introduce the following new variables

a (a - a) (3.3)

(3.4)

U = 
~x

U (3.5)

= (3.6)

By the use of Eq.(3.2) it is then easily checked that the equations of

motion in the moving coordinate system may be expressed in the form

~~a + 2(l.4~5 ~~a + 
~~ 

- p V2 ~~U = 0 (3.7)

-~~~ a + a + ~
. a - p ? v = 0 (3.8)y -  2(l+’.~) y x x y x x

Expressions for ~ C and ~ c follow front the PractdtL- Reuss flow equa-x x  x y

___________ 1’
_ _ _ r_ ~~~~~~i-_ ~~~~~-J---- 

—.— —

- ,.~~~=-::z-~’r
- 

-
-,-

~~~
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~~~~
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tions (1.3). By considering 3 (s -s ) we find

- ~~u = (2X/v ) -a - (1/p) 3
x
a_ (3.9)

Similarly the relation for 3 s yields
x xy

3 v + 3 u = - (2k/v ) a + (I/u.) ~ a (3.10)x x  y x  xy xxy

For plane strain the Tresca yield condition can be expressed in the

form

a
2 + a2 k2 (3.11)
- xy

Finally , the boundary conditions at y = 0 are

x < 0 : a = 0 , a = 0 (3.12)
Y XY

x � 0 : v = 0 axy 
= 0 (3.13)

It is noted that the yield condition (3.11) is satisfied identically

by

a = - k cosw (3.14)

a = - k siriw (3.15)xy

By introducing these expressions in (3.7) - (3.10), and subsequently

eliminating (X/v ) we arrive at a system of equations of the general form

4 3u . 3u .
E L.. ___l +_ ~~~~~O , (3.16)
i—i LJ~~x 3)?

where

= w , u2 
= a, u

3 
— u~ , u

4 
= v

~
, ‘(3.17)

and the matrix L with components L
ii 

is defined by

_ _ _  ~~
~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ 

- 
- - - 

~~~~ ~~
— 

- -



3 M
2

-tariw - a- ——— 02k(1+v)cosw k cosw

2k(i+’~) — tanw 
~~(1+~)M

2
tanw -~~~ ~(l+\)M

2

L = (3.18)

k 1 3(1—2’~)

~ cosw 2u.(1+~) 
tanw - 2 tariw 1

3(l-2~~ 10 - 
2~(l+’v)

Equation (3.16) i~ of the general form stated by Eq .(A.1) of Append ix

A. Just as for the anti-plane case we seek simple wave solutions of Eq.

(3.16). Unfortunately , for the plane strain case the system is too compli-

cated to yield an analytical solution. It is, however , possible to obtain

simple wave solutions for small values of M, where M is defined by (1.10),

by using a perturbation method which is discussed in some detail in

Appendix 3.

Expressions for the characteristic directions V = dx/dy at small

values of M are given by (B.l7) and (3.18). The relevant characteristic

direction for y ~ 0 is

l-sin~ - M 1 v  ) + 0(M
2
) (3.19)3 cosw ~l+si~~

where ~ depends analytica lly on M .

As discussed in Appendix B, the following relations on the characteristic

curves defined by are obtained :

a = - .
~k (l+’~) w ÷ a0 + 0(M

2
) (3.20)

u - ~ ~ (1_\~)
½ (l+sinw )½ 

- .~w -- 
+ u + 0(M

2) (3 .2 1)
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v = ~ (1_\,)
½ (l_sinw )½ +v ° + 0(N2) (3.22)

Substitution of (3.20)—(3.22) into the first of (3.16) yields

[1~sim~ - H ( l-~ 
\ ½

] 

~ ~ + ~ = 0 (3.2~3)cosw 1+sin~i / x y

Along the family of characteristic curves defined by ~~~~~~~~~~~~ (3.23 )

reduces to dw = 0 , i.e., w = constant.. Consequently the relation (3.19)

given by = dx/dy , can be integrated to yield

x - {l~sini~ - M (l~~~ 
) ]  y a(9) (3.24)

where p(9) is an arbitrary function of the polar angle C. For the app li-

cation at hand the appropriate choice is -a(9) a 0 for a central field of

characteristics.

Equations (3.24) and (2.21) now yield the following relations

siow - cos29 - M ~2(l-\ )~~ sinC sia29 + 0(M
2
) (3.25)

= sin2C - M ~2(l—\)J~ sinC cos2C + 0(M
2
) (3.26)

and hence

w = 29 - - M [2(l-vYj~ sinC 
+ 0(M

2
) (3.27)

Substitution of this result into (3.14) and (3.15) yields

a = k (cos28 + M [2(l~v)1
½ sinC sia28~ (3.28)

a = k ~-sin28 + N ~2(1-\~)1~ sine cos28~ (3.29)

The average pressure follows front (3.21) as

a = a - ‘~k(l-Iv) [29 - - M L2(l-v)~~ sin8~ + 0(M2
) (3.30)

- ~~
_
j -_ - - ~~~~~
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By combining (3.2), (3.3) and (3.4) we find

- - 
3c 

-— -
- 
+ 2(l+~)

a 

2(l+’) 
+ k -26-sin2C + Mk 2(l-’i)~~ cosC sin29 + 0(M

2) (3.31)

y 2(1+’~) ~~~
-

= 
2(i~~) 

+ k -2C+sin28-+2~~ E2(l-~ )~~ sin 6 + 0(M
2
) (3.32)

a = a -2’~k ~2C - - NL2(1-’)~~ sin9~ + 0(M
2
) (3.33)

In these expressions the constant a is still undetermined . Additiona l

relations can , however , be obtained from the boundary conditions (3.12) and

(3.13). Clearly (3.28) and (3.32) can neither satisfy the conditions stated

by (3.12) nor by (3.13) which suggests that (3.28) - (3.33)- are valid only

in a domain ~ C � C , while other solutions hold for 0 � 8 � and

C; � 8 � . Appropriate solution for the latter domains are again constant

states.

* *For both 0 � 9 � 8 and C � 8 � rr constant states imply a — 01 2 xy
*Equation (3.28) and the condition that a should be continuous at C 9xy 1

and B = ~; then yields the equation

* - * *cos28 + M L2(l-’~)~ sinB sin29 = 0 (3.34)

which to f irst  order in H has the solutions

~1 ~ 
+ ~~~~~~~~~ H + 0(M2) (3.35)

= + f (l_V) ½ M + 0(M
2
) (3.36)

_ _ _  
_ _ _ _ _ _ _ _ _ _ _  
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On the basis of Eq.(3.32), the condition that a should vanish at C =

yields

2(l~~) 
= (1~~)k (3.37)

The complete stress fields in the constant state regions then are easily

computed . In summary :

0 � 9 �

a — 0 (3.38)

a -  k(2~~) + 0(M
2) > 0 (3.39)

a = krr + 0(M2) (3.40)

a = 2’vk(l+ri) (3.41)

C �

a = 0 ; a = 0 ; a 2k ; -a = 2’~k (3.42a ,~ ,c,d)xy y x a

We now proceed with the computation of the strains . I n the sector

� C � 9; we obtain by substituting (3.27) into (3.21) and (3.22)

= = u0 + v~(28-~) + -~(1-v) sin29 - ~~ L2(l_vYj½ sinC (3.43)

= v + 2~ (l-~) sin
2
8 + ~~ [2(l-v)~~ cos9 (3.44)

By using the relation

a = (s + c )  (3.45)

in conjunction with (3.30) and (3.43), s follows as

C — - u
0 
+~~(1-2v)(l+rr) - ~ (1- ’~) ( 2 8 - ~

) +!~~~~2(1_~)~~ sinG

- 
~(l- ’~) sin2B (3.46) 

-~~ — ~~—

- —.w, — 
—

~
-‘— ‘- -- — -— ‘F. ~~~~~~~~~~~~ - ~~~~~~~~~ ~~~~~~~~~~~~~~~~~ 

— y~~~
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~~~ 
- 

— - ~~~~~~~~~~~~~~~~~~ 
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Next , cons ider (3.16) for i = 3 , and eliminate ~c-3x ~u 3x and ~—v /.x ~vx x -

us ing (3.20) - (3.22). The result is

- -— = r (~~ ) ~~
— 3. -e )

where f (uj )  can easily be determined . Equation (3.47) can now be integrated

with respect to x , and ~ can subsequentl y be eliminated by using (3.27).

The result of these manipulations is

u — - 
~~~ £n(2sin

2G) - 2~(l-~) cos
2
C + ~~ 2(l-\~)~~ cosG + Lri (tan

+ 2~r(y) (3.48)

Here -~(0) = 0, but otherwise -~(y) is an arbitrary function. The strain

component s then follows from (3.44) and (3.47) as

— - 
~(l-’~) cos28 - ~~

— Ln(2sin
2C) + ~ 2(l-~):~ L2cose + in (tan

+ u0 + ‘~ (y) (3.49)

At 8 = 8 , Eq.(3.44) yields

v,~ = v + ~ ~~(l-\~)~ + 0(M) (3.50)

Since v
~ 

is continuous at C = 9 , and uniform in the d omain 0 � 8 �

and since by symmetry considerations v
~ 

must vanish at 8 = 0, it follows

that

- ~ ~~(1~v)½ + 0(M) (3.51)

By evaluating (3.43), (3.46) and (3.49) at C = 8 we then obtain for

0 ~ C �

C — u° - ~~.~~(l_\~)
½ 

- 

(3.52)

- 
—__________ — — ~~~~~~~~~~~~~~~~~~~~~~~ 
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= - u0 -~~ ~~1~2~ )(1+F.) .~~ ~~~~~~~x _

= - ( v ’~ ( 3 5 .)
xy

A computation of can be based on the assumption that at C = 0

the domain of validity of (3.52) - (3.54) borders directly on the zone ~f

elastic deformation , and that € , C and a are continuous at the elastic-

p lastic boundary . If in the plastic z~n ea is represented by (3.40), and

ou tside the p lastic zone a is computed by using Hooke ’s law with s and c

as defined by (3 .52 )  and (3.53), then continuity of a yields

u
0 

= ! S( 1~~)½ + - ~(l+’~~ ~3.55)

The strains in the domain 0 ~ C � C then reduced to

= - ‘ (l+rr)~ (3.56)x

C = + (l-~ ) ( 1~~ )~ (3.57)

By evaluating (3.43), (3.46) and (3.49) at C = 8 , and using (3.51)

and (3.55) we find for 8 ~ C � Ti

C = — 1 + (1— ’~//2] (3.58)
x

C ~ ~~~~~~~ + (1— ~’)(4-/2)/2~ (3 .59)

- ~~~ ~~(l-~~~ - ~ (l-~ )(l-1//2) + ~ ~2(l-~ )~~ Ln(tan3Ti/8) + *(y) (3.60)

The crack opening angle , which is defined by tana =~v~j, follows front (3.44) by

substituting C = 9. The result is

tan~ — ~~~~(l_\)
½ (3.61)

___________ - .. ——_____________________________ ____
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The expressions for the stresses given by (3.31)-(3.33) show ~n1v a

weak dependence on “. r~ the limit of vanishing crack-tip speed ~!—~J)

these expressions reduce to the corresponding quasi-static results as ,

for example, presented by Rice and Tracey (973). In the range

< C < C; , the strains , given by (3.43), (3.46) and (3.49) strong ly

depend on N due to the presence of terms of order O M ~~). The strain

s and c have been plotted in Figs. 5 and 6 for N = 0.1. and ~t = 0.01.x y

In the limit N -. 0 the stra-ins become unbounded .

The results presented in this section do not show elastic unloading .

For the quasi-static problem it has been shown by Rice, Drugan and Sham

(1979) that an elastic unloading zone must exist in the immediate vicinity

of the crack tip.

Thus , the near-tip in-plane asymptotic results presented in this

Section, which take into account dynamic effects , display the same anomalies

that were observed in Section 2 for the case of anti-plane strain. There

is z~o uniform transition from the dynamic to the quasi-static results as the

crack-tip speed becomes very small, and the dynamic solutions do not show

elastic unloading in the immediate vicinity of the crack tip. Just as f or

the Mode-Ill case it is speculated that the actual transition from dynamic

to quasi-static results is achieved because the zone of validity of the

results of this section shrinks on the crack tip in the limit N — 0.

— —--.—- -—— .- -— - - --—=-~ -~ - - ~ -~‘—--.~~ ~~~~~~~~~~~~~~~~~~~~~ 
-

- - ~~~~~-. — ,. ~~~~~~~~~ - -~~ r~~~~~~~~~-- . — ~~~~~- 
- . . -~~ 
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APPENDIX A

Sinp ie Wave 5~~ uti -~ns

The systens of equations that appear in this ~a~ er are of tne genera

n -u ~u .
: -

~.. --~—~ -.- ---~~= o  i = : , :, . . .  ,~~~~~

j= l  ~ 
-

Equation (A.l) defines a system of ct simultaneous first-order partial

differential equations for the dependent variables u1,u,, - - - - , u .

The equations are homogeneous , and I... are functions of x ,y and ui , but

not of the derivatives of the u . . Such equations are called quasi-linear .

As discussed by e.g. Bland (1969) solutions of Eq.(A.l) are simple wave

solutions if all the u. are functions of one another , or equivalent ly,

if all u . are functions of another variable , say a . For u . = u
~
(a) we

have

_ g u ’ -~~~, ~~= u  where u~~= — ~-~ (A.2)

Equation (A.l) can then be rewritten as

‘j—l 
L~~u~ 1 ~~ + u~ ~~ = 0 (A.3)

Along any curve in the xy-plane we have

dx~~~~+d y~~2z dcp (A.4)

Hence Eq .(A.3) define total differentials along curves defined by
n n
~ L

~~
u ’ Z L du

— — 
i—i , i—I (A.5)dy du~

Equa tions (A.3) are true for all values of i, and therefore, the right-

- _____________ ., ~. ~ - - - - a— - ‘~~ .-a~~. -

1 -_--

~~
-

~~~~~ 
—c —~~ ~

-
~
-- — -—

~~~
---‘—-.-

~~~
--- 

~~~~~~~~~~~~~~~~~~~~~~~~~ 
— ~~~~~~~~~~~~~~~~ - - — -i , 

-
~

-- -
~~

- -t



‘1

hand side of Eq .(A.5) is the same for all va lues of i. Hence

ii

= (-. - - — : . .) du . = 0 = :, 2 ,:3 13 3

This system of equations has non-trivial solutions only if the determinant

o f  the coefficients vanishes , i.e., if

I L  - - -/ 5 . = 0 (A . 7 )
13

Equations (A.7) is recognized as the equation for the slopes ~ — dx/dy

of the characteristics.

The re ations holding on a characteristic of a simple wave follow

fr om Eqs .~ A.6). Since the du~ are the right eigenvectors of L.. - ‘

they are proportiona l to the cofactors of any row of L.. - ‘1

provided that such cofactors are not all zero. Thus we have

du du du1 2 n
c — c — - - - c1 2 n

where C . , i = 1,2 - - - - , n , are such cofactors.

I

-tr~,’~w~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~
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APPEND IX B

Perturbation Method

The system of governing equations for the case of plane strain , given

by (3.16), is of the general form (A.l). We again seek simple wave

solutions . Formally the equation for the characteristic curves is given

by Eq .(A.7). This equation is, however, much too complicated to be solved

ana lytically. Thus , it was attemp ted to obtain simple wave solutions for

small values of M , where N is defined by (1.20).

For H a 0 , the fourth-order equation given by (A.7), with L . .  defined

by (3.18) yields the following double roots :

o l+sinw°
-v = - — (B.l)1 cosw

o 1-situ0
— (B. 2 )2 cos~u

4

_ _  

_ 
_ _  

F
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~

—
~

- - ——

- ~~ — - 
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—0

Here the superscripts zero indicate that H a 0 . The multiplicit y of

the roots necessitates some special provisions before a perturbation

procedure can be attempted . If expansions for small H were directly

substituted in (A.7) the result would be a perturbation of (B.l) and

(B.2), while the two other different roots would not be obtained . This

difficulty can be circumvented by preceding the perturbation procedure

by a transformation which would reduce Li. at M a 
~ to the following

canonical or Jordan form’

0
l+sinaj 1 0 0 -

0cos~ -

0 l+sir~j° 
‘

. 0sing~

t.?. = (B.3)

0 0 1—s itu 1
- Sin~~

0 

.

0 0 0 1-situ
0sin~

For the case of multip le eigenvalues formal methods are available to

reduce a matrix to its canonical form. Here it suffices to state the

transition to the Jordan representation can be achieved by introducing

the new variables ~~, & , 
~~~~ 

and ‘
~

‘

~~ 

by the following substitutions

d~ 
a - da + ~ ~~~~

— dv (B .4)

2 1+v 2 l+v
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (B. 5)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (B.6)
X cOS~M I-’~ cosu, x 1-v x

_,n. ,_,-_ _,. _ -. - - .  - - -  — -  

‘ 

— j -— 
-
— - - .—

- . 4  - - 
-

1’
4 .

— ~~~~~~~ -,--—.- .-~~~~~~~~‘ — -v— ~~ —~~~~~ ---—- — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — —~~— — w ~~~~~~~~~~.. — —
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dv = d~ + d’~ (B.7)x x

For the purposes of the ~ rturbation procedure we introduce in addition

dv — d~ , d~ = d& (3.8)

With the substitutions (B.4) - (3.8) the system of equations corresponding

to (A.6) becomes

d~~+

2 3
+ ~ M

2 ~ di~ - .~~...... L situ dv 0 (B.9)2 cosu, x l-v 2 x

H 
l\) 

d~ - {v + (1. + ~ M~) ~~~~~
‘
~~~ 1 da - ~ H

2 l+SiflW d = 0 (B.lO)1—situ 2 cosw ~ 2 cosw x

2 3
- ~ M2 ~~~~~~ dZ + —v— ~~~

— sinw da +2 cosw 1-v 2

2 2
+ F_ v + (3. - 

~ N
2
)] d~ + M(l + ~~

— 
~~~

— situ ) dv = 0 (B. 11)
- cosw 2 x 1-v 2 x

-
~~ M

2 1-situ d~ + M l-’~
) 

du + [- .1 + l-si~w ~~ + ~ M2)] ~~ = 0 (B. l2 )2 cotu l+situ x cosw 2 x

The canonical form ~~ given by (B.3) is recognized as appearing in the

limit N = 0.

At this stage we can consider expansions in terms of powers of H:

V — V~ + H ~
( l)  

(B.13)

~~ L~~ + N ~~~ (B.14)

toge ther with analogous expansions for d~ , da , 
~~~ 

and 
~~~ 

while cu is

assumed to depend analytically on H.

_ _  _  

f 
~~~~~~~~~~~~~~~~~~~~~~~~~~

‘~~~~ ~~~~~~~~~~~~~ - 
~~~~~~

..-
~~~~

- -- 
~~~~~~~~~~~~~~~~ 

‘
~~~~~~~~~~ 

— ---- —-



1~~~

On the basis of Eq.(A.7) we obtain in the zero ’th approximation the

results given by (3.1) and (B.2). Considerations based on (A.8) yield

the following relations along the characteristics

du 1-situ° dv , — dc — 0 (B.15)
C 05W

The first order approximations are obtained as

= - 
1+situ ± H (l~~~n~~~ 

+ 0(M
2
) (8.16)

cosw

= 
l-si~u H 

~~~~~~~ 
+ 0(M

2
) (B. 17)

C 05W

The eigenvectors corresponding to ~~~ lead to the following relations

— d’~ = 0 , d = ( ~ )
½ 

d~ (B.18)x x 1-situ

In terms of the original variables we find

dw (3.19 )

du = [
~ 

(l_ v) ½ ( 1+sin~ )~ - dw (B.2Q )

dv — - ~~ (l-v) ¾ ( l_ sj ~~~)
¾ d~ (B.21 )

These expressions can easily be integrated. In the following we list

not only the expressions corresponding to (upper signs), but also

the ones corresponding to (lower signs):

~~~~~~~~~~ ~~~~~~~~ ~~~~ sttu)
½
~~~~~~W + ‘

~x 
(8.22)

_ _ _ _ _ _ _ _ _ _  - 
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a — = k (1+v) u + -:~ (B.23 )

v — - ~~ (l-’~)~ (1 = situ)~ + (3.24)

where u0 , -a and v° are arbi trary c onstants .x o x

It is of interest to determine ~ from the relation

2Xkr —~f
-.— (_ sine ~9V +  cosB ~9

u
~ ) (3.25 )

Corresponding to ~~~~ and we find

- 
:z(l- v)~~~ < 0 (8.26)

Analogously , we find corresponding to “~
1
~ (upper sign) and

(lower sign)

a = ± ~~~k ( l + v ) u ~~+ a  (B.27 )

u = ± 
~ 

(1 = v)~~ (l~ sinw ) ½ 
~ v + u0

v = ~~ (l-v)~ (1 = situ~~ + v° (B.29)

0 (B.30)

p 

—
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x z y

_ _ _ _ _ _  =~~~ =j~~~~~~x

1(t)

Fig. 1 Propagating crack tip with stationary and moving
coordinate systems
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Fig. 2 Dimensionless shear stress , a 1k , versus G for variousxz
crack-tip speeds ; k — yield stress in pure shear ; - - -
quasi-static solution.
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1. 0  —..
~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ——-—-———

0.8

0.6 I

\

\ \o.5\
0.4

\ O . t

0.2

0 

M~O\

Fig-. 3 Dimensionless shear stress, a / k , versus 8 for various crack-tip

speeds ; k = yield stress in pure shear ; - - - quasi-static

solution.
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e

-8 
-

Fig . 4 Engineering shear strain (I~
/k)w

~ 
versus 8 in the range

0 � 8 � 8*, for various crack-tip speeds .
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Fig. 5 Strain versus 8 for two crack-tip speeds ; ~ = 0.3.
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Fig. 6 Strain s versus 8 for two crack-tip speeds ; v 0.3.
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